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Abstract

A nonlinear time-varying dynamic model of a hypoid gear pair system with time-dependent nonlinear mesh stiffness,

mesh damping and backlash properties is formulated to study the effect of mesh stiffness asymmetry for drive and coast

sides on dynamic response. The asymmetric characteristic is the result of the inherent curvilinear tooth form and pinion

offset in hypoid set. Using the proposed nonlinear time-varying dynamic model, effects of asymmetric mesh stiffness

parameters that include mean mesh stiffness ratio, mesh stiffness variation and mesh stiffness phase angle on the dynamic

mesh force response and tooth impact regions are examined systematically. Specifically, the dynamic models with only

asymmetric mesh stiffness nonlinearity, with only backlash nonlinearity and with both asymmetric mesh stiffness and

backlash nonlinearities are analyzed and compared. Using the parameters of a typical hypoid gear set, the extent of the

effect of asymmetry in the mesh coupling on gear pair dynamics is quantified numerically. The results show that the

increase in the mean mesh stiffness ratio tends to worsen the dynamic response amplitude, and the mesh stiffness

parameters for drive side have more effect on dynamic response than those of the coast side one.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Gear dynamics has been a subject of intense interest to the gearing community during the last few decades. The
dynamic response in geared rotor systems due to the existence of gear transmission error excitation can be
harmful to structures and also tend to generate highly annoying whines. Furthermore, gear possesses very rich
dynamics due to the unique tooth-meshing characteristic that sets it apart from other power transmission devices.

One of the most sophisticated classes of gears is the hypoid set as illustrated in Fig. 1, which is designed to
transmit rotational motion between two non-intersecting, perpendicular shafts. Unlike spur or helical gears,
the line of action of a hypoid gear pair is not constant during the meshing process primarily due to the
complex curvilinear features of the hypoid gear tooth geometry and kinematics. For the same reason, the mesh
couplings in hypoid gears are not symmetric, that is their mesh parameters for the drive and coast sides are
very different. A typical hypoid gear tooth form depicting the dissimilar features between drive and coast sides
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

b gear backlash
ci mesh damping coefficient
e unloaded static transmission error
f nonlinear displacement function
g nonlinear velocity function
Ip, Ig mass moments of inertias of pinion and

gear
j
*

l unit vector along pinion/gear rotating
axis

k, ki mesh stiffness
me equivalent mass
n
*

l unit normal vector at mesh point
p difference between dynamic and static

transmission error
r
*

l position vector of mesh point
SI coordinate system for dynamic formula-

tion
t time
Tp, Tg mean loads applied to pinion and gear
d dynamic transmission error
lI directional rotation radius

o excitation frequency
z mesh damping ratio
Z system parameter
y rotational displacement
f phase angle

Subscripts

a1 fundamental harmonic
e transmission error
k mesh stiffness
l label for pinion (l ¼ p) and gear (l ¼ g)
m mean value
n refer to natural mode
1 refer to drive side
2 refer to coast side

Superscripts

� dimensionless quantities
- vector quantities
0 derivative with respect to time
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is shown in Fig. 1(c). As a result, hypoid gear dynamics is not well documented, especially the asymmetric
effect of mesh stiffness on dynamic response. In contrast, mesh characteristics of spur gears are essentially
symmetric, and their dynamic models have been studied extensively [1–4]. Most of the previous studies on the
dynamics of hypoid gear transmissions assume symmetric mesh parameters for simplicity. For example, an
earlier study by Cheng and Lim [5], in spite of including backlash nonlinearity and time-varying mesh position
and line-of-action vectors, considered only symmetric time-invariant mesh stiffness in their formulation. No
prior study on the effect of hypoid gear mesh asymmetry on dynamic response is found in the open literature.
Hence, one of the purposes of the current work is to address this gap in the literature.

A nonlinear, time-varying lumped parameter dynamic model of hypoid gear pair systems with asymmetric
mesh stiffness and backlash nonlinearities is formulated analytically. Effects of asymmetric mesh stiffness
parameters such as mean mesh stiffness ratio, mesh stiffness variation and mesh stiffness phase angle on the
dynamic mesh force response and tooth impact regions are examined for the first time. Dynamic analysis
applying the proposed models with asymmetric mesh stiffness nonlinearity only, backlash nonlinearity only
and both nonlinearities are analyzed systematically to determine the severity and impact of the asymmetric
behaviors.

2. Dynamic formulation

As shown in Fig. 1(a), a lumped parameter hypoid gear torsional vibration model that includes time-varying
mesh point, line-of-action vectors, asymmetric mesh stiffness, mesh damping and backlash nonlinearity with
unloaded static transmission error excitation is proposed for dynamic analysis. A single-point mesh model can
be assumed here to represent the overall effect of gear meshing without significant loss of accuracy as we have
applied the rigid lumped mass model for the gear bodies. It may be noted that the unloaded static transmission
error is the deviation of the gear motion from ideal condition due to tooth profile errors and misalignments
that are extremely difficult to avoid [6,7]. The mesh representation adopted in this study is basically a reduced
order form derived from the results of a quasi-static tooth contact analysis [8]. The contact analysis generates
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Fig. 1. (a) Hypoid gear pair model with two degrees of freedom, (b) pinion and gear coordinate systems and (c) a typical form of hypoid

gear tooth geometry.
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detailed geometrical, load and transmission error data at the surface profile of each tooth pair in engagement.
Our mesh analysis technique uses the concept of contact cells to condense the tooth contact analysis results
into the reduced order mesh representation applied in the proposed dynamic formulation. Details of the
mathematical treatment of this approach have already been presented in a previous study related to the effects
of time-varying mesh parameters and backlash on dynamic response [9]. The equations of motion of the two
degrees of freedom (dof) dynamic model assumed for this study can be described as

Ip
€yp þ lpgð_d� _eÞ þ lpf ðd� eÞ ¼ Tp, (1a)

Ig
€yg � lggð_d� _eÞ � lgf ðd� eÞ ¼ �Tg, (1b)

f ðd� eÞ ¼

k1ðd� e� bÞ; d� eXb;

0; �bod� eob

k2ðd� eþ bÞ; d� ep� b;

8><
>: , (1c)

gð_d� _eÞ ¼

c1ð_d� _eÞ; d� eXb;

0; �bod� eob

c2ð_d� _eÞ; d� ep� b;

8><
>: , (1d)

where Ip and Ig are the mass moments of inertias of pinion and gear, Tp and Tg are the mean loads applied on
pinion and gear, e is unloaded static transmission error, 2b is the gear backlash, and k1, c1 and k2, c2 are the
mesh stiffnesses and damping for drive and coast sides, respectively. Here, the mesh stiffnesses depict both
nonlinear and time-varying characteristics. The deviation of gear motion from ideal state in dynamics or more
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commonly known as the dynamic transmission error can be defined as

d ¼ lpyp � lgyg, (2)

while the directional rotation radius is given by

ll ¼ n
*

l � ð r
*

l � j
*

lÞ. (3)

Here, n
*

l is the unit normal vector at the mesh point on the gear surface in the coordinate system Sl as shown in
Fig. 1(b) (l ¼ p, g for pinion and gear, respectively), r

*
l (l ¼ p,g) is the position vector of mesh point and j

*
l

(l ¼ p, g) is the unit vector along the rotating axes of pinion and gear.
Suppose p ¼ d�e, Eqs. (1a) and (1b) can be reduced to a single dof equation. Here, even though ll is time

dependent, but since it is small and only vary slowly with time, and the average mesh point is typically
continuous without significant abrupt change, it is reasonable to assume ll as time invariant (_ll ¼

€ll ¼ 0) in
the derivation. This assumption makes it possible to obtain the definite form. In the subsequent analysis ll is
still considered as time varying. The definite form is given by

me €pþ gð _pÞ þ f ðpÞ ¼ me

lpTp

Ip

þ
lgTg

Ig

� €e

� �
, (4a)

f ðpÞ ¼

k1ðp� bÞ; pXb;

0; �bopob

k2ðpþ bÞ; pp� b;

8><
>: , (4b)

gð _pÞ ¼

c1 _p; pXb;

0; �bopob;

c2 _p; pp� b:

8><
>: (4c)

In the above equation, me ¼ 1=ðl2p=Ip þ l2g=IgÞ, mesh damping is assumed to be

z ¼
qk1m

2memon

¼
qon

2
, (5)

ci ¼ qki ¼
2z
on

ki; i ¼ 1; 2, (6)

where on ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1m=mem

p
, mem ¼ 1=ðl2pm=Ip þ l2gm=IgÞ. The time-varying mesh parameters can be expressed as a

Fourier series given by

lp ¼ lpm þ
X1
j¼1

lpaj cosðjotþ fpjÞ, (7)

lg ¼ lgm þ
X1
j¼1

lgaj cosðjotþ fgjÞ, (8)

e ¼
X1
j¼1

eaj cosðjotþ fejÞ, (9)

k1 ¼ k1m þ
X1
j¼1

k1aj cosðjotþ fk1jÞ, (10)

k2 ¼ k2m þ
X1
j¼1

k2aj cosðjotþ fk2jÞ. (11)
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In the fundamental harmonic form, they can be described as

lp ¼ lpm þ lpa1 cosðotþ fp1Þ, (12)

lg ¼ lgm þ
X1
j¼1

lgaj cosðjotþ fgjÞ, (13)

e ¼ ea1 cosðotþ fe1Þ, (14)

k1 ¼ k1m þ k1a1 cosðotþ fk11Þ, (15)

k2 ¼ k2m þ k2a1 cosðotþ fk21Þ. (16)

Dynamic mesh force can be computed from

F m ¼ gð _pÞ þ f ðpÞ. (17)

For simplicity, a dimensionless form of Eq. (4a) can be obtained by assuming the following equalities:

~p ¼
p

b
, (18)

~t ¼ ont, (19)

~o ¼
o
on

, (20)

~lp ¼
lp

lpm

, (21)

~lg ¼
lg

lgm

, (22)

~k1 ¼
k1

k1m

, (23)

~k2 ¼
k2

k2m

, (24)

~e ¼
e

b
. (25)

Applying the above expressions, the dimensionless mesh parameters can then be expressed as

~lp ¼ 1þ ~lpa1 cosð ~o~tþ fp1Þ, (26)

~lg ¼ 1þ ~lga1 cosð ~o~tþ fg1Þ, (27)

~k1 ¼ 1þ ~k1a1 cosð ~o~tþ fk11Þ, (28)

~k2 ¼ 1þ ~k2a1 cosð ~o~tþ fk21Þ, (29)

~e ¼ ~ea1 cosð ~o~tþ fe1Þ. (30)

Subsequently, the dimensionless form of Eq. (4a) can be obtained as

~p00 þ 2z
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~gð ~p0Þ þ

ð~l
2

p þ Z~l
2

gÞ

ð1þ ZÞ
~f ð ~pÞ ¼ ~lp

~Tp þ
~lg
~Tg � ~e

00, (31a)
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~f ð ~pÞ ¼

~k1ð ~p� 1Þ;

0;

rk
~k2ð ~pþ 1Þ;

~pX1;

�1o ~po1

~pp� 1;

8><
>: , (31b)

~gð ~p0Þ ¼

~k1 ~p
0;

0;

rk
~k2 ~p
0;

8><
>:

~pX1;

�1o ~po1

~pp� 1;

, (31c)

where some of the symbols used above can be expressed as

~Tp ¼
lpmTp

bo2
nIp

, (32)

~Tg ¼ Z ~Tp, (33)

Z ¼
l2gmIp

l2pmIg

. (34)

The mean mesh stiffness ratio rk is described as

rk ¼
k2m

k1m

. (35)

The dimensionless dynamic mesh force can be calculated as

~Fm ¼ 2z ~gð ~p0Þ þ ~f ð ~pÞ. (36)

At this point, it is necessary to define the various tooth impact conditions that will be discussed in the
subsequent parametric studies. If the dynamic response ~p in Eq. (18) is always greater than positive one, no
tooth impact between the driver and driven gear exist since the tooth pair is always in contact. This is
described mathematically in the top condition in Eqs. (31b) and (31c). On the other hand, if ~p does creep into
the regime defined by the middle condition in Eqs. (31b) and (31c) where it becomes less than positive one but
still greater than negative one during certain period of time, it will give rise to single-sided tooth impact. In this
case, the tooth pair that is supposedly in contact momentarily loses contact because the dynamic load exceeds
the drive torque. Finally, if ~p does vary substantially to the point that it also moves into the regime of less than
negative one during part of the time as shown by the last condition in Eqs. (31b) and (31c), this will produce a
double-sided tooth impact case where the driver tooth collides with both the forward and backward driven
teeth. It will be shown later that when tooth impact occurs, the dynamic response will produce jumps in the
response and other behaviors that are characteristics of highly nonlinear systems.

Proceeding on to derive the final form of the dimensionless model, Eqs. (26)–(30) can be substituted into
Eq. (31a) to yield a nonlinear time-varying equation of motion in the form of

~p00 þ 2z
ðð1þ ~lpa1 cosð ~o~tþ fp1ÞÞ

2
þ Zð1þ ~lga1 cosð ~o~tþ fg1ÞÞ

2
Þ

ð1þ ZÞ
~gð ~p0Þ

þ
ðð1þ ~lpa1 cosð ~o~tþ fp1ÞÞ

2
þ Zð1þ ~lga1 cosð ~o~tþ fg1ÞÞ

2
Þ

ð1þ ZÞ
~f ð ~pÞ

¼ ð1þ ~lpa1 cosð ~o~tþ fp1Þ þ Zð1þ ~lga1 cosð ~o~tþ fg1ÞÞÞ
~Tp

þ ~o2 ~ea1 cosð ~o~tþ fe1Þ. (37)

Since there is no analytical method presently available to treat this highly nonlinear equation (37), it is solved
by numerical means here. In this study, the explicit Runge–Kutta integration routine with variable step is
applied because of its known capability to handle strong nonlinearity. Applying this numerical integration
routine, the dynamic response ~p is obtained. From the standard deviation value and mean value of ~p at each
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frequency point ~o, the variational and mean dynamic responses are calculated. The dynamic mesh force is
then computed according to Eq. (36). The algorithm is implemented in MATLAB [10] that is a widely used
general-purpose matrix and numerical calculation program.
3. Computational results

A typical automotive-size hypoid gear pair is used as the numerical example. Applying a quasi-static tooth
contact analysis [8] that generates a large quantity of highly detailed load and pattern distributions, the
reduced order mesh parameters used in the construction of the lumped parameter model are obtained [8] as
described in the previous section. The mesh stiffness inherently includes the contact nonlinearity effect since it
is obtained by post-processing the output data from a tooth contact analysis that explicitly formulates the
nonlinear contact problem. The corresponding dimensionless values along with other system parameters for
the baseline gear design are shown in Table 1. Subsequent parametric studies consider the deviation of mesh
parameters from this initial set of values.

Applying the nonlinear time-varying dynamic model described by Eq. (37), the effects of asymmetric mesh
stiffness parameters, such as mean mesh stiffness ratio rk, mesh stiffness variations ~k1a1 and ~k2a1, mesh stiffness
phase angles fk11 and fk21, on the dynamic mesh force response and tooth impact regions are examined next.
3.1. Effect of mean mesh stiffness ratio rk

The effect of mean mesh stiffness ratio rk on dynamic response for both light and heavy loads is shown in
Figs. 2 and 4, respectively. For light load at rk ¼ 0.25, a softening response jump occurs at the primary
resonance. When rk is increased to 0.5, besides a softening response jump, a hardening response jump also
appears at a higher frequency. As rk is increased further to the value of 2, the multi-valued region between
response jump up and down transition frequencies increases. Also, as rk is increased, the dynamic mesh force
amplitude increases. It is noted that only double-sided tooth impact region is affected considerably by rk, while
single-sided tooth impact and no impact regions are nearly unchanged. To explain the phenomena, the
accompanying time-history plots are used as shown in Fig. 3. In Fig. 3(b)–(d), no impact, single-sided tooth
impact and double-sided tooth impact response are shown, respectively. For no impact response ~p 2 ð1;þ1Þ,
for single-sided impact ~p 2 ð�1;þ1Þ and for double-sided impact ~p 2 ð�1;þ1Þ as described earlier.
According to Eqs. (31b) and (31c), rk takes effect only in the case of double-sided tooth impact. It does not
come into play for no impact and single-sided tooth impact. For heavy load, the effect of rk on the dynamic
response is almost negligible. So, an increase of rk tends to worsen hypoid gear dynamics primarily for lightly
loaded condition (Fig. 4).
Table 1

Dimensionless dynamic parameters for a typical automotive hypoid gear pair

Parameter symbols Numerical values

~Tp 2.01

x 0.05

Z 0.74

rk 1.24
~lpa1; ~lga1 0.01

fp1, fg1 0.22p
~ea1 0.49

fe1 0.74p
~k1a 0.05

~k2a
0.05

fk1 �0.57p
fk2 �0.75p
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Fig. 2. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different mean mesh stiffness ratios for lightly loaded

case. ~Tp ¼ 0:4, (a) rk ¼ 0:25, (b) rk ¼ 0:5, (c) rk ¼ 1, (d) rk ¼ 2. ,&—no impact; � , J—single-sided impact; +, ,—double-sided impact;

———, , � , +—increasing frequency; - - - -, &, J,,—decreasing frequency.
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3.2. Effect of mesh stiffness variations ~k1a1 and ~k2a1

Normally, ~k1a1 is close to ~k2a1 according to the calculation results, and hence it is reasonable to assume
~k1a1 ¼

~k2a1 first. The cases for ~k1a1a ~k2a1 are discussed later. When ~k1a1 ¼
~k2a1, the effects of ~k1a1 and ~k2a1 for

light load case is shown in Fig. 5. For the current light load case, we observed that as ~k1a1 and ~k2a1 are
increased from 0 to 0.1, the dynamic mesh force response does not change much. As ~k1a1 and ~k2a1 are
increased to 0.2, it can be observed that more response jump discontinuities and double-sided tooth impacts
appear at higher frequencies, a parametric resonance occurs at ~o ¼ 0:5, and dynamic mesh force amplitude
increases.

When ~k1a1 ¼
~k2a1, the effects of ~k1a1 and ~k2a1 for heavy load are shown in Fig. 6. For ~k1a1 ¼

~k2a1 ¼ 0, there
is a small softening response jump and no double-sided tooth impact can be seen. As ~k1a1 and ~k2a1 are
increased to 0.05, a larger response jump and double-sided tooth impacts occur at the primary resonance
frequency. For ~k1a1 ¼

~k2a1 ¼ 0:1, besides a softening response jump and a hardening response jump occurring
in the vicinity of the resonance frequency, a parametric resonance occurs at ~o ¼ 0:5. For ~k1a1 ¼

~k2a1 ¼ 0:2, a
softening response jump and a hardening response jump can be observed at the resonance frequency, the
region between response jump up and down frequencies increases, and parametric resonance is more evident
at ~o ¼ 0:5. Hence, as ~k1a1 and ~k2a1 are increased, the dynamic mesh force amplitude increases considerably.
From these observations, we can conclude that an increase of ~k1a1 and ~k2a1 will worsen the dynamics especially
for heavy load case.

Although ~k1a1 and ~k2a1 are normally close to each other, they may be different in some special cases. When
~k1a1a ~k2a1, the effect of different mesh stiffness variations for light load is shown in Fig. 7. For ~k1a1 ¼ 0:05,
both response jump phenomenon and tooth impacts can be observed clearly. As ~k1a1 is increased to 0.1, the
response does not show much change. As ~k1a1 is increased further to 0.2, the response jump region at the



ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5
10-3

10-2

10-1

100

101

Frequency

D
yn

am
ic

 m
es

h 
fo

rc
e

0.5

1.00.8

600 700 800 900 1000
-4

-2

0

2

4

6

-1

1

Time

D
yn

am
ic

 re
sp

on
se

300 350 400 450 500
-4

-2

0

2

4

6

-1

1

Time

D
yn

am
ic

 re
sp

on
se

650 700 750 800 850 900
-4

-2

0

2

4

6

-1

1

Time

D
yn

am
ic

 re
sp

on
se

Fig. 3. Dimensionless dynamic responses for rk ¼ 1 for lightly loaded case: (a) dimensionless dynamic mesh force ~F m, (b) dimensionless

dynamic response ~p at ~o ¼ 0:5 with no tooth impact, (c) dimensionless dynamic response ~p at ~o ¼ 1:0 with single-sided tooth impact, (d)

dimensionless dynamic response ~p at ~o ¼ 0:8 with double-sided tooth impact. , &—no impact; � , J—single-sided impact; +, ,—

double-sided impact; ———, , � , +—increasing frequency; - - - -, &, J,,—decreasing frequency.
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resonance increases, more response jumps and double-sided impacts occur at higher frequencies, and
parametric resonance can be seen at ~o ¼ 0:5. Also, as ~k1a1 is increased from 0.05 to 0.2, the amplitude of
dynamic mesh force increases. On the other hand, as ~k2a1 is increased from 0.05 to 0.2, the response portrays
almost no change. This shows that ~k1a1 affects dynamic response more than ~k2a1.

When ~k1a1a ~k2a1, the effect of different mesh stiffness variations for heavily loaded case is shown in Fig. 8.
At ~k1a1 ¼ 0:05, a softening response jump and tooth impacts appear in Fig. 8(a). As ~k1a1 is increased to 0.1 in
Fig. 8(b), besides a softening response jump and a hardening response jump occurring at the resonance,
parametric resonance also occurs at ~o ¼ 0:5. At ~k1a1 ¼ 0:2 as plotted in Fig. 8(c), more significant response
jumps with wider frequency region can be seen at the resonance, and the parametric resonance at ~o ¼ 0:5 can
be observed more clearly. As ~k1a1 is increased from 0.05 to 0.2 leaving ~k2a1 unchanged, the dynamic mesh force
increases significantly. On the other hand, when ~k2a1 is increased from 0.05 to 0.2 while maintaining ~k1a1 the
same as the baseline design, the dynamic mesh force remains almost unchanged. This result again shows that
~k1a1 affects dynamic response more than ~k2a1, especially for heavily loaded case.

3.3. Effect of mesh stiffness phase angles fk11 and fk21

According to Eqs. (28) and (29), when ~k1a1 and ~k2a1 are equal to zero, fk11 and fk21 have no effect on the
dynamic response at all. Similarly, when ~k1a1 and ~k2a1 are very small (less than 0.05), the numerical results
indicate that fk11 and fk21 have little effect on the dynamic response. For brevity, these results are not shown
here. However when ~k1a1 and ~k2a1 are increased further to 0.2, the predicted results in Figs. 9 and 10 for light
and heavy load conditions, respectively, show that both fk11 and fk21 do have a noticeable effect on the gear
dynamic response. The light load operating condition will be discussed first.
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Fig. 4. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different mean mesh stiffness ratios for heavily loaded

case. ~Tp ¼ 2:01, (a) rk ¼ 0.25, (b) rk ¼ 0.5, (c) rk ¼ 1, (d) rk ¼ 2. , &—no impact; � , J—single-sided impact; +, ,—double-sided

impact; ———, , � , +—increasing frequency; - - - -, &, J,,—decreasing frequency.
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At the assumed baseline values of fk11 ¼ 0.57p and fk21 ¼ 0.75p as shown in Fig. 9(a) for lightly loaded
gears, both response jump discontinuities and tooth impacts can be clearly observed, as expected, based on
results presented in the earlier part of this paper. As fk11 is increased to 0.07p while keeping fk21 the same as
illustrated in Fig. 9(b), the response jumps become a little more prevalent at resonance and higher frequencies.
On the other hand, for fk11 ¼ 0.43p in Fig. 9(c), the response jump region at resonance becomes narrower, no
response jump is seen at higher frequencies and the overall amplitude decreases considerably. As fk11 is
increased further to 0.93p in Fig. 9(d), the response jump diminishes some more. In contrast, as fk21 is
increased from 0.75p to 0.25p while fixing fk11 ¼ 0.57p in Fig. 9(e), the response does not portrays any
significant change from the baseline response in Fig. 9(a). As fk21 is increased further to 0.25p in Fig. 9(f), the
response amplitude increases. For fk21 ¼ 0.75p in Fig. 9(g), the jump region at resonance becomes wider and
the amplitude also increases some more. This shows that only double-sided tooth impact response is affected
by fk21, while single-sided tooth impact and no impact response are essentially unaffected. The reason is
because, according to Eqs. (31b) and (31c), fk21 only takes effect for double-sided tooth impact condition.
Furthermore, the change in fk11 affects the hypoid gear dynamic response more than the change in fk21.

The effects of fk11 and fk21 for heavily loaded case when ~k1a1 ¼
~k2a1 ¼ 0:2 is discussed next. Fig. 10(a)

shows the dynamic response for the assumed baseline values of fk11 ¼ 0.57p and fk21 ¼ 0.75p. As expected,
less response jump discontinuities and tooth impacts exist compared to lightly loaded case result in Fig. 9(a).
As fk11 is increased to 0.07p without changing fk21 in Fig. 10(b), the response jumps at resonance becomes
larger. At fk11 ¼ 0.43p in Fig. 10(c), only a softening response jump and less tooth impacts appear at the
resonance, and the response amplitude drops considerably. As fk11 is increased further to 0.93p in Fig. 10(d),
no response jump can be observed at all and only single-sided tooth impact occurs at the resonance. As fk21 is
increased from 0.75p to 0.75p while keeping fk11 the same in Fig. 10(e–g), the response does not show much
change from Fig. 10(a) except that the response jumps become a little larger and the response amplitude
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Fig. 5. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different mesh stiffness variation values for lightly

loaded case. ~Tp ¼ 0:4, (a) ~k1a1 ¼
~k2a1 ¼ 0, (b) ~k1a1 ¼

~k2a1 ¼ 0:05, (c) ~k1a1 ¼
~k2a1 ¼ 0:1, (d) ~k1a1 ¼

~k2a1 ¼ 0:2. , &—no impact; � ,
J single-sided impact; +, ,—double-sided impact; ———, , � , +—increasing frequency; - - - -, &, J,,—decreasing frequency.

J. Wang, T.C. Lim / Journal of Sound and Vibration 319 (2009) 885–903 895
increases. Similar to the light load condition, only double-sided tooth impact region is affected by fk21, while
single-sided tooth impact and no impact regions remain about the same. Also, change in fk11 affects the
dynamic response more than variation in fk21.
4. Dynamic models with different nonlinearities

Two types of nonlinearities exist in Eq. (31a): one is the mesh stiffness asymmetry, and the other is backlash.
In this section, we will examine the separate and combined effects of these two nonlinear characteristics using
dynamic models possessing different types of nonlinearities.

If the nonlinearity in the hypoid gear pair model comprises of only mesh stiffness asymmetry and no
backlash, Eq. (31a) can be reduced to

~p00 þ 2z
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~g1ð ~p

0Þ þ
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~f 1ð ~pÞ ¼ ð~lp þ Z~lgÞ ~Tp � ~e

00, (38a)

~f 1ð ~pÞ ¼
~k1 ~p; ~pX0;

rk
~k2 ~p; ~po0;

(
(38b)

~g1ð ~p
0Þ ¼

~k1 ~p
0; ~pX0;

rk
~k2 ~p
0; ~po0:

(
(38c)
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Fig. 6. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different mesh stiffness variation values for heavily

loaded case. ~Tp ¼ 2:01, (a) ~k1a1 ¼
~k2a1 ¼ 0, (b) ~k1a1 ¼

~k2a1 ¼ 0:05, (c) ~k1a1 ¼
~k2a1 ¼ 0:1, (d) ~k1a1 ¼

~k2a1 ¼ 0:2. , &—no impact; � , J—

single-sided impact; +, ,—double-sided impact; ———, , � , +—increasing frequency; - - - -, &, J,,—decreasing frequency.
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Assuming ~k1 ¼
~k2 ¼

~k, then Eq. (38a) can be further reduced to

~p00 þ 2z
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~k ~g2ð ~p

0Þ þ
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~k ~f 2ð ~pÞ ¼ ð~lp þ Z~lgÞ ~Tp � ~e

00, (39a)

~f 2ð ~pÞ ¼
~p; ~pX0;

rk ~p; ~po0;

(
(39b)

~g2ð ~p
0Þ ¼

~p0; ~pX0;

rk ~p
0; ~po0;

(
(39c)

where the nonlinear displacement function ~f 2ð ~pÞ is shown in Fig. 11(a).
Alternatively, if the nonlinearity comprises of only backlash with symmetric mesh stiffness, i.e. ~k1 ¼

~k2 ¼
~k

and rk ¼ 1, Eq. (31a) can be simplified as

~p00 þ 2z
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~k ~g3ð ~p

0Þ þ
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~k ~f 3ð ~pÞ ¼ ð~lp þ Z~lgÞ ~Tp � ~e

00, (40a)

~f 3ð ~pÞ ¼

ð ~p� 1Þ; ~pX1;

0; �1o ~po1

ð ~pþ 1Þ; ~pp� 1;

8><
>: , (40b)
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Fig. 7. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different mesh stiffness variations for lightly loaded

case. ~Tp ¼ 0:4, (a) ~k1a1 ¼ ~k2a1 ¼ 0:05, (b) ~k1a1 ¼ 0:1, ~k2a1 ¼ 0:05, (c) ~k1a1 ¼ 0:2, ~k2a1 ¼ 0:05, (d) ~k1a1 ¼ 0:05, ~k2a1 ¼ 0:1, (e) ~k1a1 ¼ 0:05,
~k2a1 ¼ 0:2. , &—no impact; � , J—single-sided impact; +, ,—double-sided impact; ———, , � , +—increasing frequency; - - - -,

&, J,,—decreasing frequency.
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~g3ð ~p
0Þ ¼

~p0; ~pX1;

0; �1o ~po1

~p0; ~pp� 1;

8><
>: , (40c)

where the nonlinear displacement function ~f 3ð ~pÞ is shown in Fig. 11(b). The above equations (40a)–(40c) can
be partially validated by its special case for spur gear. For spur gear, where ~lp ¼

~lg ¼ 1, Eq. (40a) can be
further reduced to

~p00 þ 2z ~k ~g3ð ~p
0Þ þ ~k ~f 3ð ~pÞ ¼ ð1þ ZÞ ~Tp � ~e

00, (41)
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Fig. 8. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different mesh stiffness variations for heavily loaded

case. ~Tp ¼ 2:01, (a) ~k1a1 ¼
~k2a1 ¼ 0:05, (b) ~k1a1 ¼ 0:1, ~k2a1 ¼ 0:05, (c) ~k1a1 ¼ 0:2, ~k2a1 ¼ 0:05, (d) ~k1a1 ¼ 0:05, ~k2a1 ¼ 0:1, (e) ~k1a1 ¼ 0:05,

~k2a1 ¼ 0:2. , &—no impact; � , J—single-sided impact; +, ,—double-sided impact; ———, , � , +—increasing frequency; - - - -, &,
J,,—decreasing frequency.
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which was previously validated by the benchmark experimental results reported in Ref. [4]. The only difference
is that in Ref. [4], a dissimilar damping was used.

Finally, if both mesh stiffness asymmetry and backlash nonlinearities exist, when ~k1 ¼
~k2 ¼

~k and rk 6¼4,
Eq. (31a) reduces to

~p00 þ 2z
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~k ~g4ð ~p

0Þ þ
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~k ~f 4ð ~pÞ ¼ ð~lp þ Z~lgÞ ~Tp � ~e

00, (42a)
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Fig. 9. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different mesh stiffness phase angles for lightly loaded

case. ~Tp ¼ 0:4, ~k1a1 ¼
~k2a1 ¼ 0:2, (a) fk11 ¼ �0.57p, fk21 ¼ �0.75p (baseline values), (b) fk11 ¼ �0.07p, fk21 ¼ �0.75p, (c) fk11 ¼ 0.43p,

fk21 ¼ �0.75p, (d) fk11 ¼ 0.93p, fk21 ¼ �0.75p, (e) fk11 ¼ �0.57p, fk21 ¼ �0.25p, (f) fk11 ¼ �0.57p, fk21 ¼ 0.25p, (g) fk11 ¼ �0.57p,
fk21 ¼ 0.75p. , &—no impact; � , J—single-sided impact; +, ,—double-sided impact; ———, , � , +—increasing frequency; - - - -,

&, J,,—decreasing frequency.
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Fig. 10. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different mesh stiffness phase angles for heavily

loaded case. ~Tp ¼ 2:01, ~k1a1 ¼ ~k2a1 ¼ 0:2, (a) fk11 ¼ �0.57p, fk21 ¼ �0.75p (baseline values), (b) fk11 ¼ �0.07p, fk21 ¼ �0.75p, (c)
fk11 ¼ 0.43p, fk21 ¼ �0.75p, (d) fk11 ¼ 0.93p, fk21 ¼ �0.75p, (e) fk11 ¼ �0.57p, fk21 ¼ �0.25p, (f) fk11 ¼ �0.57p, fk21 ¼ 0.25p, (g)
fk11 ¼ �0.57p, fk21 ¼ 0.75p. , &—no impact; � , J—single-sided impact; +, ,—double-sided impact; ———, , � , +—increasing

frequency; - - - -, &, J,,—decreasing frequency.
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~f 4ð ~pÞ ¼

ð ~p� 1Þ; ~pX1;

0; �1o ~po1

rkð ~pþ 1Þ; ~pp� 1;

8><
>: , (42b)

~g4ð ~p
0Þ ¼

~p0; ~pX1;

0; �1o ~po1

rk ~p
0; ~pp� 1;

8><
>: , (42c)

where the nonlinear displacement function ~f 4ð ~pÞ is shown in Fig. 11(c). The corresponding linear time-varying
(LTV) equation can be described as

~p00 þ 2z
ð~l

2

p þ Z~l
2

gÞ

ð1þ ZÞ
~k ~p0 þ

ð~l
2

p þ Z~l
2

gÞ

ð1þ ZÞ
~k ~p ¼ ð~lp þ Z~lgÞ ~Tp � ~e

00. (43)

Next, the effects of mesh stiffness asymmetry nonlinearity, backlash nonlinearity and their interactions are
studied numerically for the baseline design using the above three models. Dynamic models with only mesh
stiffness asymmetry described by Eqs. (38a)–(38c), with only backlash nonlinearity given by Eqs. (40a)–(40c)
and with both types of nonlinearities expressed in Eqs. (31a)–(31c) are compared, and the corresponding
dynamic mesh force results for lightly and heavily loaded conditions are shown in Fig. 12(a)–(c) and (d)–(f),
respectively. Note that these results have been generated applying the same Runge–Kutta integration routine
used earlier.

In Fig. 12(a) that corresponds to light load condition with mesh stiffness asymmetry, the increasing
frequency response coincides exactly with the decreasing frequency response. The mesh stiffness asymmetry
did not result in any response jump discontinuity, but it did cause a slight shift in the resonance response of the
dynamic mesh force compared to the LTV predictions. In Fig. 12(b) that corresponds to light load condition
with only backlash, a pair of softening and hardening response jumps can be clearly observed. Also, the
presence of backlash lowers the resonance frequency compared to the LTV predictions. In Fig. 12(c) in which
both types of nonlinearities exist, their interaction appears to increase the frequency region between response
jump up and down. For heavily loaded condition, the dynamic response essentially produces the same trends
as shown in Fig. 12(d–f). From these results, it is clear that although mesh stiffness asymmetry affects response
amplitude and resonance frequency, its effect is not as strong as backlash nonlinearity, and furthermore the
response jump discontinuity is obviously caused by backlash. Also, mesh stiffness asymmetry has slightly more
effect on dynamic response in light load condition as compared to heavy load one.

5. Concluding remarks

A nonlinear time-varying dynamic model of a hypoid gear pair system with time-dependent mesh point,
line-of-action vectors, asymmetric mesh stiffness, mesh damping and backlash nonlinearities is formulated to
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Fig. 12. Dimensionless dynamic mesh force ~Fm versus dimensionless frequency ~o for different dynamic models. Light load ~Tp ¼ 0:4, (a)
only mesh stiffness asymmetry without backlash, (b) only backlash without mesh stiffness asymmetry, (c) with both mesh stiffness

asymmetry and backlash. Heavy load ~Tp ¼ 2:01, (d) only mesh stiffness asymmetry without backlash, (e) only backlash without mesh

stiffness asymmetry, (f) with both mesh stiffness asymmetry and backlash. ———, nonlinear time-varying model (increasing frequency);

� � � � � � � � � � , nonlinear time-varying model (decreasing frequency); - - - -, linear time-varying model.

J. Wang, T.C. Lim / Journal of Sound and Vibration 319 (2009) 885–903902
study the effect of mesh stiffness asymmetry on dynamic response. Using this model, the effects of asymmetric
mesh stiffness parameters, such as mean mesh stiffness ratio, mesh stiffness variation and mesh stiffness
phase angle on the dynamic mesh force response and tooth impact regions are examined. It is obvious that
mesh stiffness asymmetry does affect hypoid gear dynamic response considerably. The increase of mean mesh
stiffness ratio rk tends to worsen dynamic response especially for lightly loaded case. The increase of mesh
stiffness variation ~k1a1 and ~k2a1 will aggravate dynamics significantly especially for heavy load case. Also, ~k1a1

affects dynamic response more than ~k2a1 especially for heavily loaded case. The effects of mesh stiffness phase
angle fk11 and fk21 on dynamics depend on the values of ~k1a1 and ~k2a1. When ~k1a1 and ~k2a1 are negligible, fk11
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and fk21 have no effect on dynamic response at all. When ~k1a1 and ~k2a1 are very small (less than 0.05), fk11 and
fk21 have only a small effect on dynamics. When ~k1a1 and ~k2a1 are large enough, it is shown that both fk11 and
fk21 affect dynamics with fk11 influencing the response more than fk21. Furthermore, only double-sided tooth
impact region is affected by rk, ~k2a1 and fk21, while single-sided tooth impact and no impact regions change
very little. This is because these parameters will take effect only if double-sided tooth impact condition is
satisfied as shown in the theoretical formulation.

Dynamic models with only mesh stiffness asymmetry, with only backlash and with both mesh stiffness
asymmetry and backlash are also analyzed and compared. The results show that although mesh stiffness
asymmetry affects dynamic mesh force amplitude and resonance frequency, its effect is not as prominent as
backlash nonlinearity, and the response jump discontinuity seen is mostly caused by backlash. Mesh stiffness
asymmetry nonlinearity has more effect on dynamic response for lightly loaded condition as compared to
heavily loaded one.
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